DIOPHANTINE EQUATIONS OF THE FORM OVER FUNCTION FIELDS

نویسندگان

چکیده

Abstract Let $\ell $ and p be (not necessarily distinct) prime numbers F a global function field of characteristic with constants $\kappa . Assume that there exists $P_\infty which has degree $1$ let $\mathcal {O}_F$ the subring consisting functions no poles away from $f(X)$ polynomial in X coefficients We study solutions to Diophantine equations form $Y^{n}=f(X)$ lie and, particular, show if m satisfy additional conditions, then are nonconstant solutions. The results apply certain rings integers $\mathbb {Z}_{p}$ -extensions known as constant {Z}_p$ prove similar for ring $K[T_1, \ldots , T_r]$ where K is any showing only must our methods $Y^n=\sum _{i=1}^d (X+ir)^m$ $m,n, d\geq 2$ integers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine Equations and Congruences over Function Fields

We generalize the methods of Pierce of counting solutions to the congruence X ≡ Y b mod D [8] and the square sieve method of counting squares in the sequence f(X) + g(Y ) [7] to the function field setting.

متن کامل

Solving resultant form equations over number fields

We give an efficient algorithm for solving resultant form equations over number fields. This is the first time that such equations are completely solved by reducing them to unit equations in two variables.

متن کامل

Diophantine Equations in Cyclotomic Fields

where p is a given rational prime? It is almost trivial (from the theory of the Gaussian sum or otherwise) that a solution exists with g =p; it is less trivial that a solution also exists when g = p+p+l; but it is not asserted that solutions do not exist for other values of g. While we are unable to give anything like a complete answer to the problem proposed, we can prove something in this dir...

متن کامل

Diophantine Inequalities in Function Fields

This paper develops the Bentkus-Götze-Freeman variant of the DavenportHeilbronn method for function fields in order to count Fq[t]-solutions to diagonal Diophantine inequalities in Fq((1/t)).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The Australian Mathematical Society

سال: 2023

ISSN: ['0004-9727', '1755-1633']

DOI: https://doi.org/10.1017/s0004972723000412